Search results

Listed under:  Science  >  Forces and energy  >  Mechanical energy  >  Motion
Video

Elliot and the Surfing Scientist: Make a lava lamp model using oil and water

Imagine making your very own lava lamp using materials from your kitchen and bathroom. Watch the Surfing Scientist team show you how it can be done, then try and figure out why it works.

Video

Elliot and the Surfing Scientist: Balancing an aluminium can: centre of gravity

Be astounded as you watch Ruben the Surfing Scientist make an aluminium soft drink can balance at 45 degrees and rotate in a circle, as if by magic. Learn about the science behind this trick.

Video

What makes these paper planes fly?

Have you ever wondered what makes a paper plane fly? Think about the design of the paper plane as well as external factors like the various forces that are at play, then make a list of the design considerations and a list of the different forces.

Text

Rocket aerodynamics

Rocket aerodynamics is the study of how air flows over a rocket and how this affects design, drag and stability. This article looks at the design of a rocket and the purpose of the features of it.

Online

Collisions and biomechanics lesson

This lesson plan investigates ways in which automobile manufacturers seek to reduce injuries that occur in car accidents. Students note the effects of car accidents on human bodies, the factors that influence the type and severity of injuries, and the safety ratings of vehicles in which they travel regularly. The resource ...

Interactive

Energy skate park: basics

This is an interactive teaching and learning resource that years 7 to 10 secondary school students can use to simulate the motion of a skateboarder descending and ascending on a variety of tracks. Height, speed and energy conservation are visually displayed. The skater's mass and starting height, as well as the drag he ...

Video

Newton's first law of motion

This resource is a video with audio commentary that provides an in-depth exploration of the concepts linked together in Newton's first law of motion. It unravels the meaning of each part of the law through audio commentary, quick on-screen sketches and other annotations. The differences between balanced and unbalanced forces ...

Interactive

Projectile motion

This is an interactive resource about projectile motion. Students use a simulation of a cannon to fire various objects. They can set the firing angle, initial speed, height and mass, with or without air resistance. Students are encouraged to make a game out of this simulation by trying to hit a target. This interactive ...

Online

reSolve: Modelling Motion - Year 7

This sequence of seven lessons challenges students to use simple equipment to predict, observe and represent motion. They create a series of graphs to represent motion and construct instruments to measure forces in one and then two dimensions. They interpret these representations to develop concepts of force and motion. ...

Video

Friction: Friend or foe?

What part does the force of friction play in our everyday lives? Friction can be an advantage (friend) or a problem (foe). Join interviewer Doug Traction and professors Static, Slide, Rolling and Fluid at the National Tribology Research Centre as they have forceful fun investigating friction. This video won a prize in the ...

Online

Drone search lesson

This lesson plan introduces students to the practice and applications of using drones to take aerial photographs. Students learn safety procedures regarding the use of drones then capture images of simulated disaster areas. Students observe the use of drones in science and technology-based endeavours and suggest new applications ...

Interactive

Invictus Games Sydney 2018 – Science – Stage 5

Modern prosthetics are developed to offer comfort and practicality in a range of complex environments. This Stage 5 unit, The science and technology of prosthetics and the physics of movement, explores a number of technological advances in the field of prosthetics including material strength, sensors and actuators and osseointegration. ...

Interactive

Energy skate park

This is an interactive resource about the potential and kinetic energy changes as a skater rolls around a skate park. Students learn about conservation of energy with a skater, they can build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. Students can also ...

Video

Experimentals: Do different things fall faster?

Want to find out what happens when you drop a watermelon and an apple from the top of a building? In this clip, Bernie Hobbs and Ruben Meerman, investigate whether the mass of an object influences how fast it falls. Bernie and Ruben ride the 'Giant Drop' at Dreamworld, drop a watermelon and apple from an eighth floor balcony, ...

Video

All about engines

What does 'horsepower' really mean? And how do engines work? Join Luke and Abhi from MIT to find out! As Abhi explains, engines produce power by forcing a mixture of fuel and air into a tight space and then burning it. Piston engines and turbine engines do this in similar, yet different ways. After watching this video, ...

Video

Ramping it up, Egyptian pyramid style

How did the ancient Egyptians move and lift huge stones during construction of the pyramids? Secondary student Angus Atkinson designed an experiment to find out how the lives of pyramid workers could have been made easier. See how as you watch this video, which he entered in the 2013 Sleek Geeks Eureka Science Schools Prize.

Video

Catalyst: Do heavier things fall faster?

Will a medicine ball or a basketball hit the ground first when dropped at the same time from the same height? In this clip, Catalyst's Dr Derek Muller investigates what influences the speed at which objects fall. Derek challenges some people in a market to make a prediction and explain their thinking, before he finally ...

Interactive

Wild ride: get a grip

Investigate the role of friction in performance of bicycle tyres. Test how the type of tread affects grip and speed. Choose tyres best suited to track and weather conditions in a time trial. This learning object is one in a series of four objects.

Interactive

Pushing and pulling

Move animals from a boat to their new home in a zoo. Put them on a cart, then use monkeys to push or pull them up a hill. Use the minimum amount of force needed to move each animal. For example, use a single monkey to push a pelican or use three monkeys to pull a zebra. This learning object is a combination of three objects ...

Interactive

Pushing and pulling: assessment

Test your understanding of push and pull forces by moving animals using monkey power. Investigate and then predict the effects of applying a force to move a range of objects of various mass. For example, select two monkeys to move a pelican, and predict whether they will move the pelican slowly, quickly or too fast.